

National Department of Transportation Infrastructure

Antônio Leite dos Santos Filho

General Director

Lucas Alberto Vissotto Júnior

Director of Highway Infrastructure Substitute

Bráulio Fernando Lucena Borba Junior

General Coordinator of Highway Operations

Davi Costa Melo

Operations Coordinator COPERT

Rubem Ferreira Queiroz

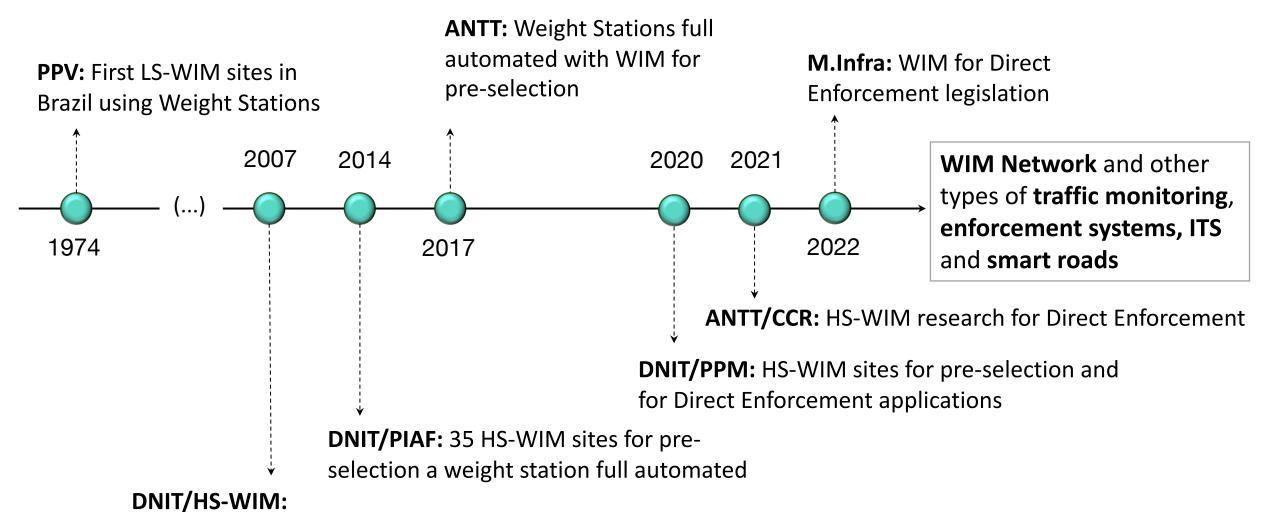
Civil Engineer COPERT

Gustavo Garcia Otto

Civil Engineer LabTrans/UFSC

Reginaldo Nazário Prazeres Júnior

Civil Engineer COPERT


Rodrigo Alves de Ávila Nunes

Civil Engineer COPERT

History of WIM for enforcement in Brazil

beginning of WIM applications in Brazil

MAIN GOALS

- Improve road safety and pavement performance on federal highways;
- Improve the performance of overload enforcement;
- Automate the pre-selection of overload enforcement;
- Optimize the activity of DNIT Traffic Agents with the help of technology;
- Allow free flow of trucks and buses without overload and reduce inspection time;
- **Expand overload enforcement on the federal road network.**

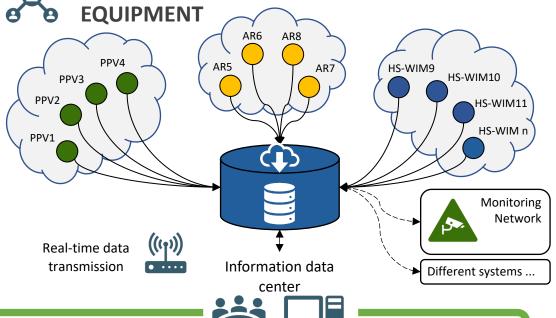
Brazil roads and highways in numbers

Road N	Road Network - extension in km			
	Paved	Non-Paved	Total	
Federal	65.686	9.286	74.972	
State, Transitional, State and Municipal Highways	149.333	1.340.814	1.490.147	
Planned Road Network	-	-	157.309	
Total	215.019	1.350.100	1.722.428	

Concession Road Network - extension in km		
Federal Concessionaires	10.365	
Federal Concessionaires	12.824	
Municipal Concessionaires	38	
Total	23.227	

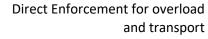
Vehicle Fleet			
Rigid truck	29.530.222		
Tractor truck	799.732		
Trailer	2.002.459		
Semi-trailer	1.160.422		
Interstate and international buses	29.673		
Intercity buses	57.000		
Freight bus	23.619		
Urban buses	107.000		
No. of Road Terminals	173		

Legal support and WIM for Direct Enforcement


- RTM do INMETRO: Launch of Metrologic Instrument No. 019/2022, that replaces No. 375/2013:
 - ✓ 3 Classes (in service): GVW 5%, 7% e 10%.
 - ✓ 3 Classes per axle (in service): Axes/Axes groups 8%, 12%, 16%.
- M.Infra working group: Discussion on legal changes for enforcement with WIM.
- **Standardization ABNT/CE-016:**
 - ✓ ABNT NBR ISO 15638-20 Framework for cooperative telematics applications for regulated commercial freight vehicles (TARV) — Part 20: Weigh-in-motion monitoring (launch in 18/11/2021).
 - ✓ ABNT NBR (under discussion) Automatic weighing of road vehicles in motion requirements.

Brazil plans for on-road overload enforcement

Data collection of traffic and transport

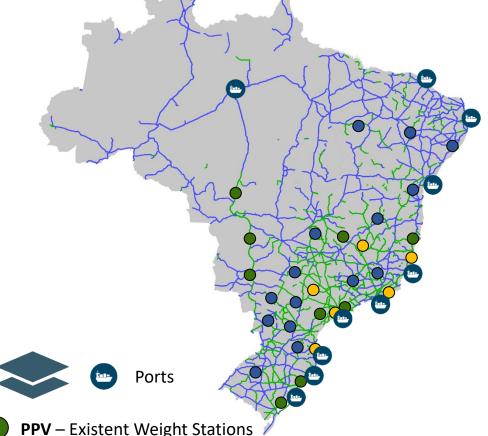

Intelligence and data from commercial transport

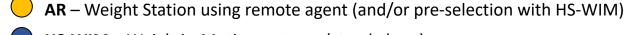
Overload enforcement operation with remote agent

Information, data, traffic statistics, weight, indicators, etc.

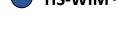
Integration of data and information with different parties

Publications of information and indicators

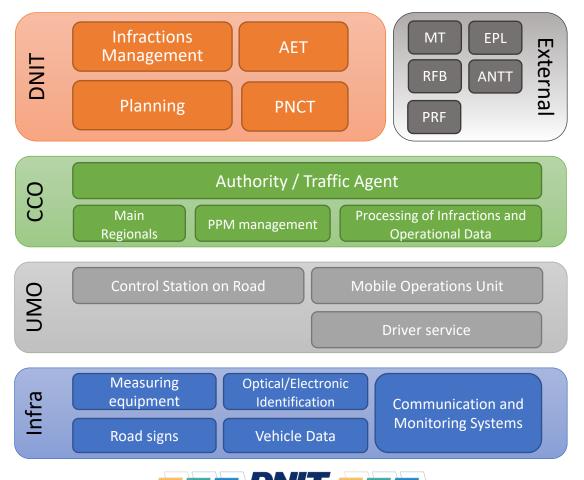

possible routes




Identification of new places for overweight enforcement considering the



Operational architecture

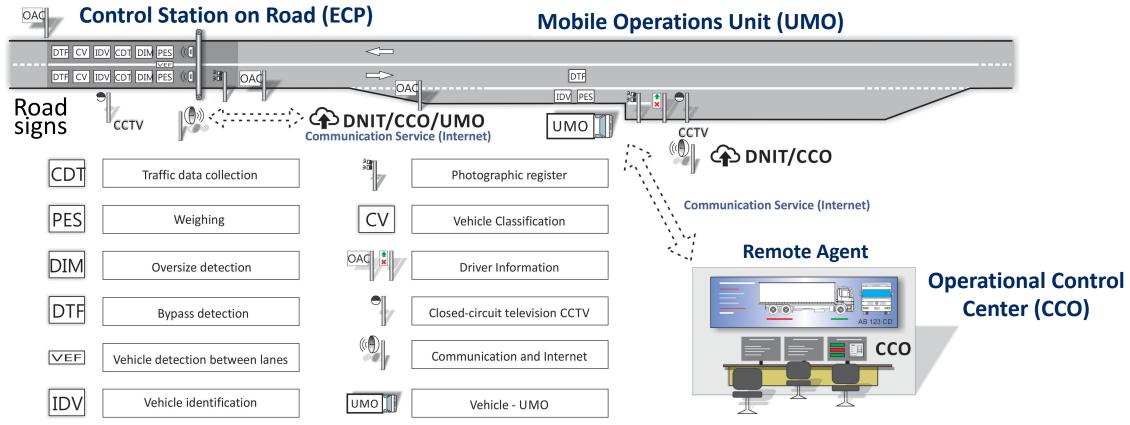

BASIC DEFINITIONS

Operational Definitions

• Support databases

- Operational parameters
 - Support databases
- Audio/Video Communication

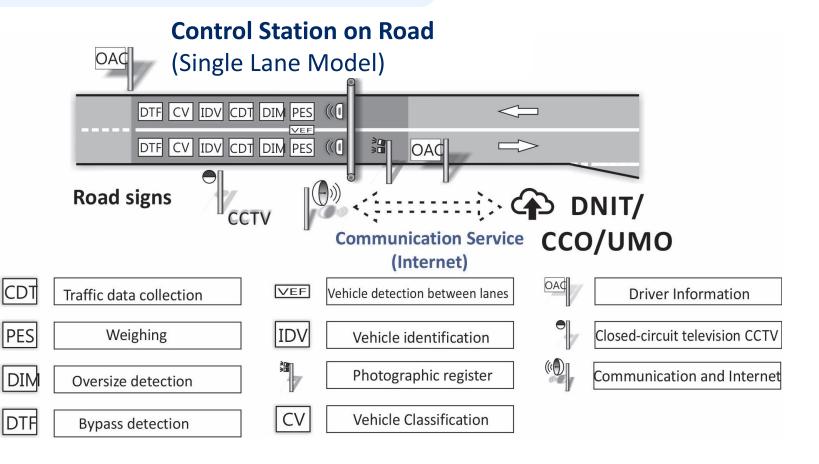
Operational parameters


- Registration of Infractions
- Traffic Count
- Transport events
- Operational indicators
- Registration of Infractions
- Transport events
- Operational indicators
- Audio/Video Communication
- Video surveillance
- Vehicle identification
- Photographic register
- Classification
- Weight
- Dimensions

MODEL: HIGH-SPEED ECP, UMO E CCO

Mixed Weighing Station – PPM (Single Lane Model)

1 LOCATION FOR INSTALLATION AND OPERATION


- The choice of locations for implementing the PPM:
 - ✓ Weight Station Location Tool developed by UFSC.
 - ✓ It considers the contributions of the flow of heavy vehicles from the roads that are the main logistical corridors of the federal network.
- The result of this analysis is the indication of the sections whose inspection is necessary due to the large flow of heavy vehicles.
- Choosing the location of the ECP installation and the UMO's operation:
 - ✓ Performance of the chosen weighing systems
 - ✓ Reduction of escape routes through state and municipal roads.

2 CONTROL STATION ON ROAD - ECP

CONTROL STATION ON ROAD - ECP

- A Thick Asphalt Pavement (PCAE) solution to ensure performance and accuracy in the operation of the weigh-in-motion system.
- The pavement design considered COST-323 Class I for WIM site.
- Autonomous, uninterrupted operation and with constant communication with the CCO and UMO.
- Design solution according to:
 - ✓ International regulations, WIM performance and technologies, pavement solution performance and ease of execution, operation and maintenance.

2

ECP – INTERNATIONAL REFERENCE REGULATIONS

Adopted regulations:

- ❖ "International Organization of Legal Metrology" OIML-R-134-1 (2006):
 - ✓ Adopted the Max Permissible Error (MPE) criteria for the WIM system.

- "European Cooperation in Science and Technology" COST-323 (2002):
 - ✓ The Geometry and Pavement Structure criteria were adopted.

ECP – INTERNATIONAL REFERENCE REGULATIONS

❖ OIML-R-134-1 (2006):

- ✓ It is recognized worldwide and followed by metrological institutions in countries with WIM for direct enforcement.
- ✓ Defines Maximum Permissible Error (MPE) classes for WIM systems.
- ✓ Defines installation conditions ANNEX B and C, regarding vertical profile.
- ✓ It does not establish a relationship with the type of pavement and global error (WIM + Pavement).
- ✓ The required class of error followed the proven international experiences for direct enforcement, such as: Czech Republic, Russia and Hungary.
- ✓ Considered by INMETRO as a normative reference.

2

ECP – INTERNATIONAL REFERENCE REGULATIONS

❖ OIML-R-134-1 (2006): Classe 5E

<u> </u>			
Accuracy class for	Percentage of conventional value of the vehicle mass (6.7)		
vehicle mass	Initial verification	In-service inspection	
0.2	±0.10 %	±0.20 %	
0.5	±0.25 %	±0.50 %	
1	±0.50 %	±1.00 %	
2	±1.00 %	±2.00 %	
5	±2.50 %	±5.00 %	
10	±5.00 %	±10.00 %	

	Accuracy class for single-axle load and axle-group load	Percentage of the corrected mean single-axle load or corrected mean axle-group load		
		Initial verification	In-service inspection	
	A	±0.50 %	±1.00 %	
	В	±1.00 %	±2.00 %	
	С	±1.50 %	±3.00 %	
	D	±2.00 %	±4.00 %	
	E	±4.00 %	±8.00 %	
	F	±8.00 %	±16.00 %	

ECP – INTERNATIONAL REFERENCE REGULATIONS

COST-323 (2002):

- ✓ Recommends Test procedure standardization, for different applications, and results comparison.
- ✓ Establishes Performance, Accuracy and recommendations for performing performance tests *Statistical Approach* Does not define a Maximum Permissible Error (MPE).
- ✓ Defines performance classes for a 95% Confidence Interval.
- ✓ It considers pavement deformability conditions for different types of pavements (Semi-rigid, All Bitumen and Flexible) and geometry.
- ✓ Establishes criteria and recommendations for pavement design and geometry.

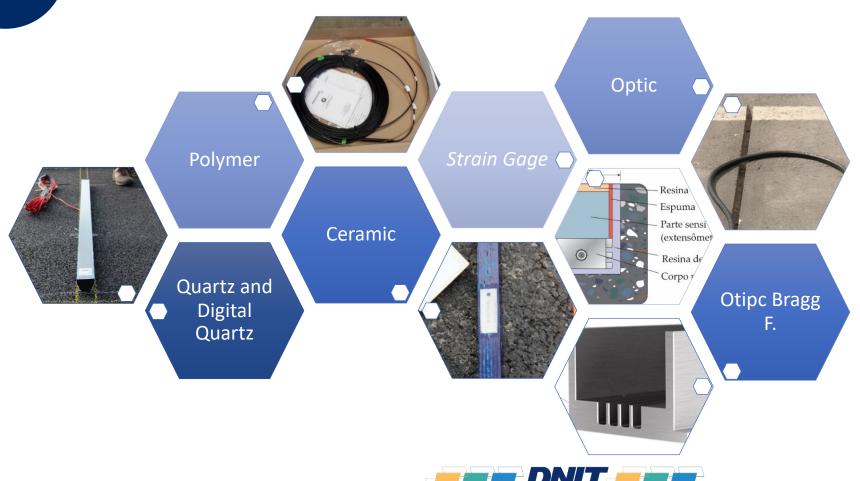
WIM site classes

ECP – REGULAMENTAÇÃO INTERNACIONAL DE REFERÊNCIA

COST-323 (2002):

WIM-Site conditions and pavement solution.

			I Excellent	II Good	III Acceptable
Rutting (3 m - beam)		Rut depth max. (mm)	≤ 4	≤ 7	≤ 10
Deflection	Semi-rigid	Mean deflection (10 ⁻² mm)	≤ 15	≤ 20	≤ 30
	Pavements	Left/Right difference (10 ⁻² mm)	± 3	± 5	± 10
(quasi-static)	All bitumen	Mean deflection (10 ⁻² mm)	≤ 20	≤ 35	≤ 50
	Pavements	Left/Right difference (10 ⁻² mm)	± 4	± 8	± 12
(13 t - axle)	Flexible	Mean deflection (10 ⁻² mm)	≤ 30	≤ 50	≤ 75
	Pavements	Left/Right difference (10 ⁻² mm)	± 7	± 10	± 15
Deflection	Semi-rigid	Deflection (10 ⁻² mm)	≤ 10	≤ 15	≤ 20
	Pavements	Left/Right difference (10 ⁻² mm)	± 2	± 4	± 7
(dynamic)	All bitumen	Mean deflection (10 ⁻² mm)	≤ 15	≤ 25	≤ 35
	Pavements	Left/Right difference (10 ⁻² mm)	± 3	± 6	± 9
(5 t - load)	Flexible	Mean Deflection (10 ⁻² mm)	≤ 20	≤ 35	≤ 55
	Pavements	Left/Right difference (10 ⁻² mm)	± 5	± 7	± 10
Evenness	IRI index	Index (m/km)	0 - 1.3	1.3 - 2.6	2.6 - 4
2 venness	APL ⁽¹⁾	Rating* (SW, MW, LW)	9 - 10	7 - 8	5 - 6

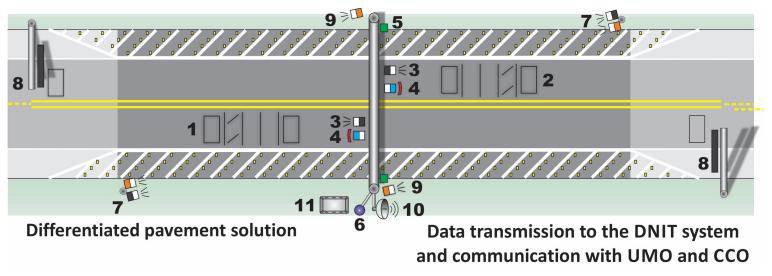


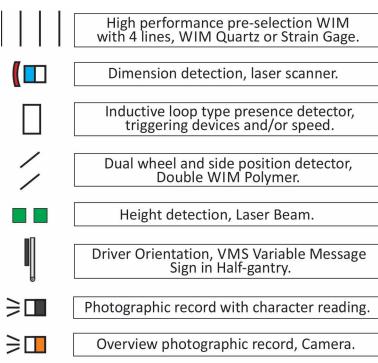
2 ECP - H

ECP - HS-WIM TECHNOLOGY

2

ECP - TECNOLOGIAS HS-WIM





2

ECP - TECHNOLOGICAL SOLUTION

Control Station on Road (Single Lane Model)

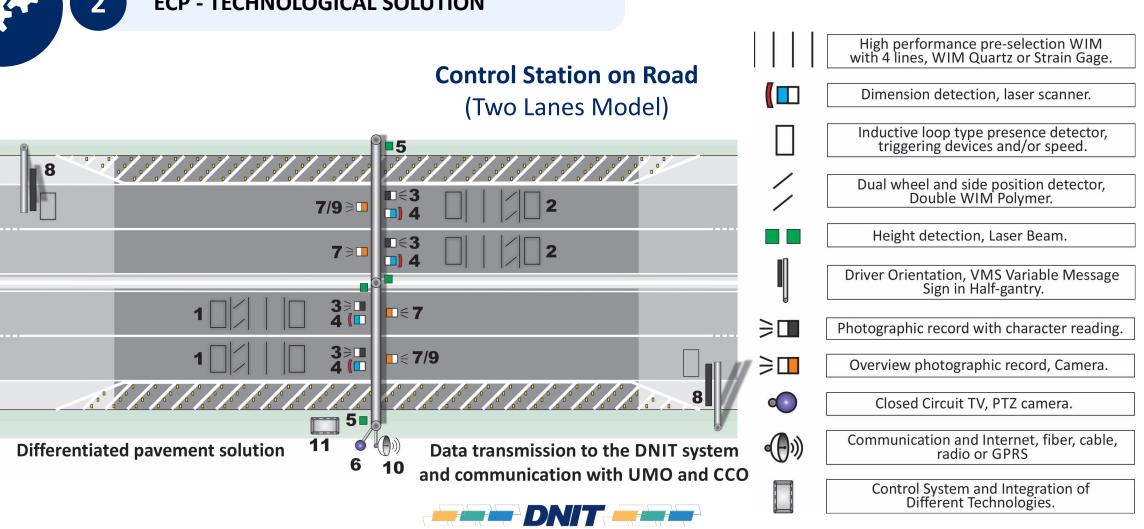
Closed Circuit TV, PTZ camera.

Communication and Internet, fiber, cable,

radio or GPRS

Control System and Integration of Different Technologies.

0

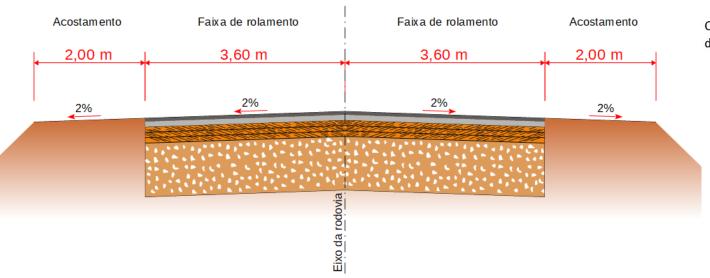

(((**(**)))

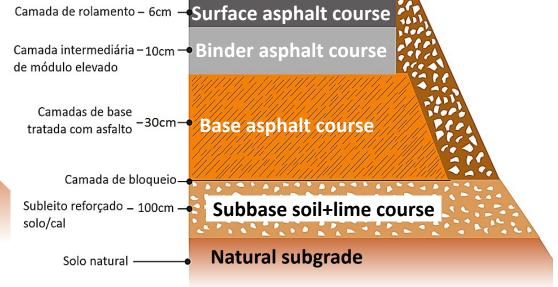
ECP - TECHNOLOGICAL SOLUTION

2

ECP – PAVEMENT SOLUTION

- Thick Asphalt Pavement:
 - ✓ Solution that meets the requirements of the HS-WIM technology solution (COST-323), as shown in studies carried out by CGPERT in partnership with UFSC.
 - ✓ Construction and maintenance can be perform by companies with experience in asphalt paving, which operates on the existing market.
 - ✓ DNIT road network has asphalt pavement as the main type of surface.
 - ✓ Thick asphalt pavement has low deformability and are suitable for WIM sensors installation on the surface.

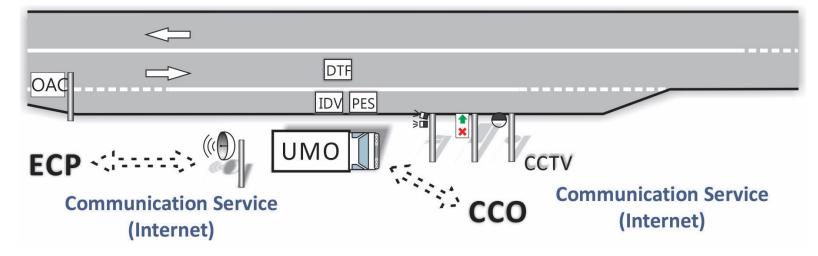


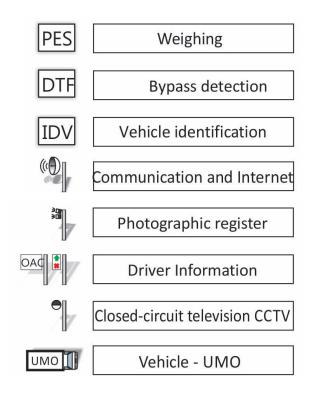

2

ECP – PAVEMENT SOLUTION

Control Station on Road

(Single Lane Model)





3

MOBILE OPERATIONS UNIT – UMO

Mobile Operations Unit (Single Lane Model)

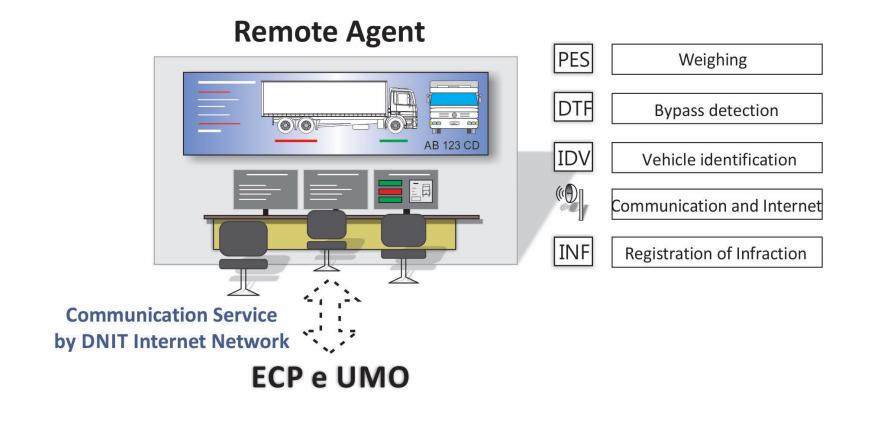
MOBILE OPERATIONS UNIT – UMO

- Each UMO will be linked to an Operation Base, from where it will depart before each operation and to which it will return, and to one or more Enforcement Locations, where it will enforce vehicles pre-selected by the ECP.
- The location of the Operation Base will be defined by the respective Regional Superintendence of DNIT (Federation units of Brazil).
- The inspection points of the UMO will be defined by the respective Regional Superintendence according to the position of their respective ECP, in places that favor the safety of the operation, taking into account the indications suggested by DNIT.

3 MOBILE OPE

MOBILE OPERATIONS UNIT – UMO

- Operations Team:
 - \checkmark The team was plan to operate in the 12x36 system during the day.
 - ✓ The option of night operation in the 12x36 system was also foreseen, when demanded by the regional Superintendence, on a continuous basis, based on the amounts provided for DNIT.



4

OPERATIONAL CONTROL CENTER – CCO

4 OPERATIONAL CONTROL CENTER – CCO

- The CCO will be installed at the Superintendence or at the Local Unit as indicated by DNIT.
- DNIT will provide a room for the CCO, so that the Agents can monitor the operation and inspection of the weight and size of the cargo transport vehicles in the Mobile Operating Units without any complications.

5 COMMUNICATION: CCO/UMO/ECP

- All communication will be carried out using internet connection.
- The communication system via Internet, between ECP and UMO, between ECP and SIOR DNIT/SEDE and between UMO and CCO must have a minimum bandwidth guaranteed by the provider of at least 10 Mbps for Upload, and 10 Mbps for Download.
- It must have a fixed IP address and enable the management of opening communication ports. Each of the units, ECP and UMO, must have its own independent internet link.
- It will be necessary to hire a data service provider to the location of the ECP and UMO, under the responsibility of the contractor.
- It is the contractor's responsibility to ensure continuous communication.

Implementation and operation plan

PLANS FOR IMPLEMENTATION

Progressive Implantation

1st Phase

States:

- Bahia;
- Sergipe;
- Alagoas;

Deadline:

2022/2023 – Construction of the ECP;

2022/2026 – Operation of the PPM;

Total of 4 PPM

Implementation and operation plan

PLANS FOR IMPLEMENTATION

Progressive Implantation

2nd Phase

States:

- Espírito Santo;
- Minas Gerais;
- Rio de Janeiro;
- São Paulo;
- Piauí;
- Acre;
- Amazonas;

- Amapá;

- Ceará;
- Distrito Federal;
- Goiás;
- Mato Grosso;
- Roraima;

Deadline:

2023 – Construção da ECP;

2023/2026 – Operação do PPM;

Total of 15 PPM

Implementation and operation plan

PLANS FOR IMPLEMENTATION

Progressive Implantation

EXPECTATION

- 41 PPM in 3 years;
- 19 PPM by end of 2023;
- Cover all Federal Units.

