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A B S T R A C T

Bridge weigh in motion (B-WIM) comprises the use of sensors on existing bridges in order to assess the loads of
passing vehicles. Although numerous methods for weight estimation on static B-WIM algorithms may be found in
the literature, there is not available a comparison study among them, especially regarding accuracy and sta-
tistical assumptions. Hence, this paper provides a critical comparison on a subset of conceptually similar B-WIM
methods, further extending the discussion on their theoretical assumptions, beyond what is currently available in
literature. The methods are not only referenced but reinterpreted and reformulated in a unifying manner, al-
lowing an in-depth comparison. Moreover, a parametric study on the performance and sensitivity of methods is
conducted. Not only simulated but also real data are employed in the comparison, supporting conclusions.

1. Introduction

A bridge weigh in motion (B-WIM) system effectively turns a bridge
in a weighing mechanism by means of recovering the live load of
passing vehicles from strain information obtained through sensors.
These systems are installed underneath the bridge, which does not
disrupt road traffic and also improves the durability and portability of
the system [1]. Therefore, it can be an efficient tool for overweight
enforcement since it is able to measure vehicles weight traveling at
operating speed. The information retrieved from the system can also be
employed in other contexts such as maintenance planning, structural
health monitoring, service life estimation and traffic network planning
[2]. The cost of installing and maintaining B-WIM systems is therefore
often lower due to better accessibility and synergy effects with other
projects when compared to other traffic monitoring systems [3].

The main idea behind B-WIM systems, firstly introduced by Moses
[4], relies on equating the bending moment on the bridge with the
product of the magnitude of the applied moving load and the influence
line ordinate of the bridge. By this formulation, it is possible to estimate
the axle weights of passing vehicles as those which generate the best
agreement between theoretical and measured bending moment re-
sponse. For more aspects regarding general information about B-WIM
systems, as well as some implementation considerations, the reader is
referred to Lydon et al. [5], Yu et al. [6], Žnidarič et al. [7].

Differently from the theoretical influence line employed by Moses,

recently developed approaches apply crossing vehicles with known
weight and the corresponding measured deformations to derive the
influence line of the bridge, a procedure known as calibration [8–11].
This formulation is valid as long as the static analysis is considered. In
practice, however, the dynamical motions induced by vehicles may
increase the difficulty in the correct influence line evaluation and
consequently weight prediction [12].

Due to the dynamic behavior, B-WIM methods may be divided into
two classes, related to explicitly considering or not the dynamic for-
mulation and bridge-vehicle interaction. Several papers contributed
with different approaches in the first class, with a higher emphasis on
the concept of Moving Force Identification (MFI) [13–15,1,12,16]. This
class of methods, however, may need to consider a full 3D model of the
bridge for a suitable accuracy, thus requiring extensive computational
effort [6]. Therefore, although some promising results, MFI methods are
not yet able to deal with some important applications, such as real-time
monitoring [17]. For the static class, which is the focus of this paper,
several researchers presented novel contributions in the past decade.
Ieng [8] proposed a maximum likelihood approach to estimate the
bridge influence line, generalizing the method by simultaneously taking
into account measurements available from as many calibration trucks
as needed. Zhao et al. [9] considered the transverse distribution of
wheel loads on the axle weight estimation. Kim et al. [18] trained ar-
tificial neural networks for the estimation of Gross Vehicle Weights
(GVW). O’Brien et al. [10] introduced the concept of probabilistic
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influence line seeking to find the most probable axle weights. O’Brien
et al. [11] employed Tikhonov regularization for overcoming the ill-
posedness of the B-WIM problem.

Although the performance of proposed methods is usually argued as
useful for practical application, their results often disregard other re-
cent studies in the same subject. As a consequence, it becomes hard to
evaluate the state-of-the-art improvements, since each study relies on
specific bridges, whose performance are not directly comparable with
each other. Furthermore, although some of those methods make direct
statistical assumptions, similarities with other approaches and practical
consequences of these assumptions are usually not evaluated. Indeed,
there has not been identified any publications comparing theoretical
aspects, practical applicability as well as the performance of recent B-
WIM algorithms.

In the present work, a comparative investigation, comprised of 5
state-of-the-art methods on weight estimation using static B-WIM al-
gorithms, is conducted. The methods employed in this investigation are
presented in Ieng [8], Zhao et al. [9], O’Brien et al. [10], O’Brien et al.
[19] and O’Brien et al. [11], which are related to influence line ac-
quisition, weight prediction or both simultaneously. In the proposed
analysis, all methods are reformulated or reinterpreted in a unified
manner, allowing theoretical statistical comparisons. Furthermore, the
practical consequences of some assumptions are discussed.

In order to perform the proposed analysis, a large set of distinct
conditions, such as bridge span and road profile, is numerically simu-
lated. The generated data set is employed for improving comparisons,
since it enables relating the bridge properties and a method’s perfor-
mance. It may help users in choosing the most suitable method for their
specific case. Furthermore, real-world signals are also evaluated, of-
fering validation for the conclusions drawn based on the simulated
model.

The main contribution of this paper is to conduct an investigation of
B-WIM procedures, further explaining their theoretical considerations,
the relation among methods and presenting a comparison of their
performance. The methods are not only discussed as referenced, but are
reinterpreted and reformulated in a unifying manner, employing a si-
milar notation, which more easily enables comparisons. Thus, the
analyses pursued here aim to lead to new insights for the development
of novel methods or for choosing methods based on which cases they
are likely to perform better.

The paper is organized as follows: Section 2 employs the same
formulation framework on the analyzed methods, enabling not only
numerical but conceptual, theoretical and implementation compar-
isons. Section 3 presents the numerical comparison of all methods using
simulated data, and remarking some theoretically expected aspects. The
results obtained from real field data are presented in Section 4. Finally,
Section 5 addresses further comments and discussion while Section 6
presents concluding remarks.

2. Methods overview and discussion

General aspects regarding the methods that belong to the scope of
this study are discussed in this section. Further analyses are conducted
for five methods whose characteristics are relevant for the overall
comparative context. For the remaining methods, the aspects that
prevent their inclusion in the comparative study are remarked.

2.1. Matrix method

The study of O’Brien et al. [19] develops the matrix method for the
acquisition of the influence line. It derives the equations for three-axle
calibration trucks by minimizing a quadratic residual based on the
predicted response of a pre-weighted vehicle. In their study, the influ-
ence line for two vehicles with three and seven axles are calibrated and
the similarity between measured and predicted responses is shown. This
work contributed with a systematic way of employing direct bridge

measurements by first calibrating an influence line based on a pre-
weighted truck, which is later used for weighing arbitrary vehicles. This
contrasts with the use of the theoretical influence line proposed in
Moses [4].

2.1.1. The Matrix approach itself
The Matrix method results in a least squares solution. The basic idea

starts from Moses algorithm, where one must minimize an error func-
tion R, comprised of the sum of the squares of differences between the
measured bending moment Mm and the theoretical bending moment
Mt. The measured term, for an instant k is given by:

∑=
=

M E Z ε ,k
m

g

G

g g g
1 (1)

where G represent the number of girders and E Z,g g, and εg are the
elastic modulus, section modulus and measured strain of the −g th
girder, respectively. The theoretical term introduces the influence line
and reads:
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and J is the number of axles, Wj is the weight of the −j th axle, −IL k C( )j
is the influence ordinate at the position of the −j th axle, dj is the
distance between the first axle and −j th axle, Cj is the number of scans
corresponding to dj, f is the sampling frequency and v is the vehicle
velocity. It is worthwhile to point that if −k Cj results in a index that
does not match an influence line ordinate, it is attributed the value of
zero for it.

The error term reads:
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(4)

where k represent each scan and K the total number of scans.
Differently from the work of Moses, where Mt was based on a theore-
tical influence line, in O’Brien et al. [19] it is now considered an un-
known and solved with the minimization of Eq. (4) by calibrating with
a vehicle with known weight. After the influence line based on direct
measurements has been found, one can proceed as usual with Moses
method for finding the unknown weights of vehicles passing over the
bridge. That is:

= −W M(Λ Λ) ΛT T m1 (5)

where W is the vector of predicted axle weights and Λ is a matrix based
on the influence line ordinates, shifted according to the axle spacing,
defined as:

= −ILΛ .kj
k Cj (6)

Thus, Λ is a ×K J matrix. Furthermore, the same observation done for
−ILk Cj in Eq. (2) holds here.
The error function in Eq. (4) defines a least square problem. By the

statistical point of view, such an approach is the maximum likelihood
estimator when errors are independent and normally distributed
random variables [20]. These errors are related to each measured or-
dinate and at the same event of calibration. However, these underlying
error assumptions may not be met when considering practical cases. For
example, missing information on formulation could be seen as corre-
lated errors [21]. Thus, if the model description in Eq. (2) is not ac-
curate enough, a least squares estimate would not provide the best
result. Nevertheless, one could still extract useful information from the
method application, even though minor violations on the assumptions
are present [22].
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2.2. The maximum likelihood approach

The work of Ieng [8] proposes the utilization of maximum like-
lihood estimation (MLE) to obtain the influence line, based on cali-
bration data. The main reason argued by the study is that the method
proposed by O’Brien et al. [19] is not robust enough and the influence
line derivation is done only with signals produced by a single pass of the
calibration vehicle. Thus, the MLE approach intended to overcome
these issues, applying an iid (independent and identically distributed)
Gaussian random noise to the formulation.

Ieng [8] compared the MLE approach with the matrix method of
O’Brien et al. [19], using the ∞L norm (maximum value of error) be-
tween predicted and measured strains as the criterion. The presented
results were derived using different traffic data from the one employed
in calibration. Ieng [8] concluded that the applied methodology
achieved smaller errors regarding to the measured strains.

2.2.1. The MLE approach itself
Measurements are always corrupted with some kind of noise, in-

troducing uncertainties into the analysis. The maximum likelihood
approach aims to include these uncertainties into the formulation in
order to reach a more robust influence line.

It is assumed in MLE that the measurements are corrupted by ∊, a
zero mean multivariate normal random variable:

= + ∊M M ,m t (7)

where Mm and Mt are the vectors of measured and modeled moments,
respectively, such that:

=M AIL,t (8)

where IL is a vector with the ordinates of the influence line and A is a
Toeplitz matrix of the loads. The matrix A is based on the impulse load
vectorW :

W = ⎧
⎨⎩
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(9)

where Wj is the weight of the −j th axle and Cj is analogous to that one
defined in Eq. (3). This impulse vector represents the whole vehicle,
with each axle load at their respective axle position. The A matrix is
formed by shiftingW in each line of A, which corresponds to a discrete
convolution, where each line relates to a time step of the vehicle pas-
sing over the bridge:
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where K and J are the total number of scans and axles, respectively.
Furthermore, several calibration trucks could be employed, passing

N times over the bridge. Each passage of the vehicle could be counted as
a realization of the random variable ∊. Then, the notation may be
modified to:

= + ∊M M ,i
m

i
t

i (11)

where the index i ranges from 1 to N, the total number of signals col-
lected. In order to merge data from distinct runs, one could suppose that
all data collected is related to the same random variable. In this way, it
becomes necessary to interpolate the data vectors to common ordinates.

Assuming that the realizations of this variable are independent
among events, the likelihood can be written as the product of the in-
dividual probabilities:

∏= ∊
=

L ILpdf( | ),
i

N

i
1 (12)

where pdf is the probability density function of ∊ and L is the likelihood.
The principle of MLE is equivalent to minimizing the negative of its
natural logarithm with respect to IL:
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Inserting Eq. (11) into Eq. (13), it reads:
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As the variable ∊ follows a multivariate normal distribution, the
expression of its pdf could be introduced into the formulation:
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where Σ is the covariance matrix of the random variable ∊, |. | is the
determinant operator and K is the number of dimensions of the multi-
variate distribution, which corresponds to the number of scans in this
case. Using the logarithm properties:
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This expression can be minimized by setting to zero its first derivative
with respect to IL. Supposing that the covariance matrix Σ is in-
dependent of the IL ordinates, it results that the derivative of the first
term is zero. The derivative of the remaining expression can be written
as:
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which results in:
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Recalling that =AB B A( )T T T and Σ is a symmetric matrix:
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Rearranging the expression and assuming that the covariance is a di-
agonal matrix, with equal variance:

∑ ∑=
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the expression proposed in the study is reached. To find the solution it is
necessary for ∑ = A Ai

N
i
T

i1 to be invertible, condition that is satisfied ac-
cording to Ieng [8]. Similarly to the work of O’Brien et al. [19], the MLE
method provides a way to find the influence line based on calibration
data. Thus, the weighing procedure is also analogous to that stated by
Moses.

2.2.2. Comparing MLE and matrix method
The comparative aspect between MLE and matrix method was al-

ready assessed in the work of Ieng [8]. The matrix method was derived
based on data of only one calibration run, while the MLE approach
could be seen as a generalization of the matrix method for cases where
more calibration runs were performed. Hence, the matrix method needs
some kind of assembly strategy, such as performing the mean of re-
sulting influence lines from several runs. It is worthwhile mentioning
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that, as previously discussed for the matrix method, the MLE approach
will only be the maximum likelihood estimator when errors are in-
dependent and normally distributed random variables, with equal
standard deviation.

2.3. pBWIM

The pBWIM approach was proposed by O’Brien et al. [10], which
aimed to directly incorporate probabilistic information about several
passages of calibration vehicles to construct the influence line. This
formulation assumed that each measured influence line ordinate fol-
lows a normal distribution, obtained from field testing. The matrix
method is employed to derive the parameters of these distributions,
based on a single influence line for each event. Finally, the estimated
axle weights are those with the highest probability of occurrence among
all possible combinations.

In order to derive the pBWIM results, two different levels of in-
formation were applied to generate the influence line: the whole cali-
bration data or only a subset of events. The goal was to reproduce a
situation closer to the real case, whose small number of calibration
events are available. The results showed that with less information, the
pBWIM achieved better results in comparison with the traditional ap-
proach.

2.3.1. The pBWIM approach itself
Considering that the response Mt is the sum of products of axle

weights and influence line ordinates, the response related to scan k M, k
t ,

could be written as:

∑=
=

−M W IL ,k
t

j

J

j k C
1

j
(21)

where J is the number of axles, W is the vector of axle weights, −ILk Cj is
the influence line value at ordinate −k Cj and Cj is the offset distance
between the ordinates of the influence line related to axle j. If the value
of −k Cj results in an index that does not correspond to an influence
line ordinate, the value zero is attributed to it, since it reflects a si-
tuation where the axle is out of the bridge.

Since each influence line ordinate follows a known normal dis-
tribution and the response Mk

t is a linear combination of normal vari-
ables, the response Mk

t itself also follows a normal distribution. Thus,
each ordinate has a corresponding normal distribution defined by the
parameters:
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where μk
M and σk

M are the mean and standard deviation of the random
variable related to the predicted moment of each bridge ordinate k,
respectively. Furthermore, τ and −σk Cj are the standard deviation of the
measurement noise and influence line, respectively.

Given the measured moments Mk
m, related to a specific bridge or-

dinate, the probability of a set of weights being responsible for gen-
erating such measures could be formulated as (highlighting those terms
that rely on the weights W):
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Assuming that all random variables related to the measured moments
on each ordinate are independent, an expression for finding the weights
that most likely have generated such data could be formulated as:
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⎠
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P Wargmax ( ) ,W
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K

k
1 (25)

where K is the total number of scans in the measured response.
Therefore, it is necessary to find the weights that maximize this ex-
pression. The procedure described by O’Brien et al. [10] to obtain the
axle weights is based on a grid search, whose bounds and increments
are arbitrary parameters. Such study has applied 0.8 and 1.2 times the
weights predicted by the matrix method as bounds and 0.1 kN as in-
crement. It is worth pointing that such a procedure is quite time-con-
suming, especially when increasing the number of axles.

2.3.2. The assumption of independence
Although pBWIM method provided reasonable results, an assump-

tion made in the derivation of the procedure seems to be violated. In
order to better understand it, one can write the response Mt in matrix
formulation, as already discussed in Eq. (8):

=M AIL,t (26)

where A is the Toeplitz matrix for a given set of axle loads and IL is the
influence line vector, assumed to be comprised by independent Gaus-
sian random variables by O’Brien et al. [10]. As IL is supposed to be
Gaussian, it is straightforward to calculate the covariance matrix of the
resulting moments random vector Mt, dealing with A as a linear
transformation applied to the IL random variables:

= A AΣ Σ ,M
T

ILt (27)

where ΣMt and ΣIL are the covariance matrix of the predicted moments
and influence line, respectively. Recalling that ΣIL is diagonal, since the
influence line ordinates are defined as independent random variables,
and writing the matrix multiplication with index notation, results in an
expression for each term of the ΣMt matrix:

∑=
=

A AΣ Σ ,
M
ij

k

K

ik IL
kk

jk
1

t
(28)

where K is the total number of scans. As already mentioned, for the
predicted moments to be independent random variables, it is necessary
that ΣMt be diagonal. Matematically, for all i and j, with ≠i j, one must
have =Σ 0

M
ij

t . Thus, for showing that such independence does not

occur, it is enough that there are i and j, with ≠i j, such that ≠Σ 0
M
ij

t .
Observing Eq. (28), it could be noticed that A A,ik jk and ΣIL

kk will
always be non-negative. The first two because of the structure of matrix
A, which is comprised only by axles weights and zeros, as seen in Eq.
(10). The last one is strictly greater than zero, since it is the diagonal of
a covariance matrix. Therefore, just one term of the summation greater
than zero is sufficient to ensure a non-diagonal covariance. In other
words, it is enough that, for any k, there are i and j, with ≠i j, such
that:

>A A 0.ik jk (29)

One could see that the condition of Eq. (29) is always met when, at
least, one column in A has more than one non-negative value. For the
Toeplitz matrix A, it occurs when the passing vehicle has more than one
axle, being the difference between the corresponding i and j equal to the
number of scans separating both axles. Thus, for the general case, ΣMt is
not a diagonal matrix and predicted moments are not independent
random variables, violating this assumption. It is worth to mention that
if the matrix A is diagonal, which corresponds to a vehicle with only
one axle passing over the bridge, the independence holds. However,
such a case is clearly unrepresentative for B-WIM applications.

2.3.3. Comparing pBWIM and MLE approaches
In the definition of the pBWIM approach, O’Brien et al. [10] account

for a zero mean error in the measurement. In this way, the stated for-
mulation could be seen as a total least squares, with the form:
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+ ∊ = +IL W M τ( ) ,m (30)

where IL now is a matrix containing the influence line ordinates in each
column, shifted by the corresponding axle spacing in the rows and W is
the vector of weights. However, as it became necessary to have some
estimate for the standard deviation of the measurement noise, O’Brien
et al. [10] set this value to zero. Therefore, resulting in a problem such
that:

+ ∊ =IL W M( ) . (31)

Such a formulation remarks the difference between pBWIM and MLE
approaches. The former accounts for error in the independent variable
while the latter sums it to the dependent variable. While the formula-
tion of MLE results in a closed-form solution, the approach of pBWIM
requires some form of optimization procedure in order to find the most
likely weights. Furthermore, pBWIM does not make any assumption
regarding errors with equal standard deviation, which is the case for
MLE.

2.4. Tikhonov regularization

O’Brien et al. [11] applied Tikhonov regularization to the matrix
method equations. The reason is that the final system of equations used
to solve the axle weights has an ill-conditioned or ill-posed nature. With
this approach, the authors intended to achieve better results mainly for
the weight by axle, which is acknowledged to have worse prediction
precision than total vehicle weight. The author used the well known L
curve method [23] to define the regularization parameter, evaluating
parameters ranging from −10 90 to 600,000. It is worth to mention that
the solution is unique for each parameter.

The method was theoretically tested using dynamic simulations of a
series of moving forces on a bridge. The author concluded that the
regularized solution performed better than the matrix method.
However, as the vehicle dynamics increased, the convergence of the
regularized solution was not as accurate.

2.4.1. The Tikhonov regularization approach itself
Tikhonov or ridge regression is a regularization technique that uses

the least squares framework with the addition of another term that
depends on a regularization parameter λ. This term can be viewed as a
penalization aimed at improving the conditioning of the system. One
can employ the colon notation to denote the Frobenius inner product
and Frobenius norm, respectively:

=A B A B: tr ( ),T (32)

= =A A A A A‖ ‖ tr ( ) : ,F
T2 (33)

and consider the error function of the full matrix case:

= −R M TW ,m (34)

where Mm represents measured moments, W are axle weights and T is a
matrix used to perform the convolution procedure between influence
line and weights.

In Tikhonov regularization, one should minimize a function f,
comprising the error norm as well as the regularized solution norm,
with respect to the matrix W. Therefore, writing function f as:

= + = +f R λ W R R λW W‖ ‖ ‖ ‖ : : ,F F
2 2 (35)

it is straightforward to compute the differential and gradient as follows:
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= − − +
= − +
= − +
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T
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∂
∂
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f

W
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Setting this gradient to zero, one can find an expression for the optimal
weight matrix:

− + =
− + =

+ =
= + −

T TW M λW
T TW T M λW

T T λI W T M
W T T λI T M

2 ( ) 2 0
0

( )
( ) ,

T

T T

T T

T T1 (38)

where the matrix I represents the identity matrix.
Considering that each λ parameter defines a unique regularized

solution Wλ, the nontrivial task is to obtain the optimal regularization
parameter for the problem solution. Numerous methods exist for this
task such as cross-validation [24], ridge trace [25], and the L-curve
method [26]. In their study, O’Brien et al. [11] opts for the L-curve
method where two norms are defined. The first one is the residual norm
of the error for each specific regularization parameter, given by:

= − −E M TW M TW( ) ( ) .norm λ
T

λ (39)

The second, is the norm of the solution for each regularization para-
meter, given by:

=F W W .norm λ
T

λ (40)

According to the method, the optimal λ is located at the corner of the
curve constructed by plotting Fnorm and Enorm on a log-log scale. The
corner, represents a trade-off between bias and variance on the system
approximation. Fig. 1 illustrates the usual shape of the L-curve. O’Brien
et al. [11] does not details the process of optimal lambda selection.
Nevertheless, other regularization parameters could be obtained given
different approaches for finding the L-curve corner such as the Spline-
based Curvature Method [27], Triangle Method [28] or Adaptive
Pruning [29]. Considering that the numerous algorithms focused only
on the L-curve approach exist, which often returns different “optimal”
points, the task of finding the optimal regularization parameter is seen
as complex and subjective [10].

2.4.2. Statistical aspects behind the regularization approach
In order to understand the statistical interpretation of the for-

mulation employed by O’Brien et al. [11], we make use of the analogy
of Bayesian methods and regularization where the maximum a priori
estimate of a normal prior with normal likelihood results in the same
estimation as a Tikhonov regularization (for demonstration and proof
the reader is referred to Aster et al. [20]). That is, by the Bayesian
perspective, initial probability statements are updated, providing a
posterior distribution that combines both prior knowledge and the data

Fig. 1. The generic form of the L-curve plotted in double-logarithmic scale,
adapted from: [23].
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at hand [30]. Thus, instead of a single estimate as output, Bayesian
statistics provide a probability distribution for the model parameters. It
is worthwhile mentioning that it is possible to derive a single estimate
from such posterior as, for instance, its maximum a posteriori (MAP).
The prior distribution is obtained independently of the results of mea-
surements [31]. It could represent in a B-WIM application, for example,
the knowledge about the non-negativity of predicted axle weights.

The regularization procedure could be interpreted from a Bayesian
perspective. The MAP solution obtained by using a prior with in-
dependent and normally distributed model parameters is precisely the
Tikhonov regularized solution, as demonstrated in Aster et al. [20].
Aligning this interpretation with the already discussed aspect of a trade-
off between bias and variance, the regularization parameter arises as
the ratio between noise and prior variances [32]. Thus, a lower reg-
ularization parameter means a less informative prior is adopted. For the
extreme case of zero in the regularization parameter, the least square
solution is obtained.

However, Tikhonov regularization and Bayesian approach are not
entirely equivalent, since Bayesian solution is a probability distribution,
while the Tikhonov solution is a single set of parameters [20]. Hence,
the regularization procedure could be seen as a bridge between non-
Bayesian and Bayesian estimation problems [32].

When employing Bayesian or regularization approaches, some bias
is introduced to the formulation. Accordingly to the adopted method,
straightforward ways for incorporating each kind of prior knowledge
could be reached. However, the formulation developed by O’Brien et al.
[11] has not made use of any prior information as, for example, the
already discussed non-negativity of axle weights. Thus, making use of
such knowledge could result in improved weigh procedures, for both
regularization and Bayesian approaches.

2.5. Including transverse position into formulation

The work of Zhao et al. [9] accounts for the transverse distribution
of axle loads on each girder in the formulation. By using the calculated
influence line of each girder as a reference, a modified 2D Matrix
method was derived to identify axle weights of moving vehicles. Zhao
et al. [9] emphasized that, although there are theoretical approxima-
tions for the transverse load distribution, the measured data was em-
ployed to generate one transverse distribution coefficient for each
girder.

The results presented are based on two calibration vehicles, passing
10 times on each lane. Therefore, the influence line of each girder is the
mean of each event. Zhao et al. [9] concluded that the method is sui-
table for simply supported concrete slab-girder bridges. It is noteworthy
that the study did not compare the results with the matrix method, or
any other method. Finally, some limitations are cited at the end of the
paper, such as that the methodology is not suitable for box-girder
bridges or other long-span bridge forms.

2.5.1. The modified 2D Matrix method itself
An additional parameter Qg is introduced into the model of the 2D

modified method. It is supposed to represent the transverse distribution
of the vehicle loads on each girder. Zhao et al. [9] calculated it based on
the 50 largest strains, as the ratio between the strain of a given girder
and the total value:

=
∑ =

Q
ε

ε
,g

g k

g
G

g k

,

1 , (41)

where k is a scan related to one of the 50 largest strains and εg k, is the
strain measured for scan k and girder g, of a total of G girders. Thus, this
measure can be seen as the percentage of total strain that distributes on
each girder. Although the study recognizes that along the driving di-
rection the transverse load distribution factor of each girder is position-
dependent, a constant value for each girder was applied. The reason is

that most slab-girder bridges have equally distributed lateral con-
nectivity in the vicinity of the mid-span. Furthermore, it supposes that,
after calculating the contribution of each girder, each one is responsible
for their own load only, independent of the others.

The algorithm for influence line calculation is analogous to the
Matrix method, however resulting in one influence line per girder. It is
based on a least-squares minimization of the difference between the
measured and predicted strains at mid-span:

∑= −
=

R ε ε( ) ,g
k

K

g k
m

g k
t

1
, ,

2

(42)

where εg k
m
, and εg k

t
, are the measured and predicted strains at scan k and

girder g. Furthermore, Rg is the squared error, calculated individually
for each girder g. The predicted strain could be written as:

∑=
=

−ε
E Z

W Q I1
g k
t

g g j

J

j g g k C,
1

,( )j
(43)

where W Qj g is the weight contribution of the −j th axle on each girder.
Using the matrix notation applied for all methods analyzed here, the

influence line for each girder could be calculated as:

= −IL AQ AQ AQ E Z ε(( ) ( )) ( ) ,g g
T

g g
T

g g g
m1 (44)

where ILg is the vector of influence line ordinates for the girder g A, is
Toeplitz matrix of loads described in Eq. (10).

The weighing procedure is based on a least square minimization
between predicted and measured moments, considering the axle
weights as variables of interest. In order to maintain consistency with
the previous formulation, the weighing procedure may be written as:

∑= −

=

W E Z ε((Λ ) Λ ) Λ ( )Q
T

Q Q
g

G

g g g
m1

1 (45)

= − M((Λ ) Λ ) Λ ,Q
T

Q Q
m1 (46)

where ΛQ is a matrix of influence line ordinates defined by:

= ×IL QΛ ,Q G n
T (47)

where Q is the vector grouping the transverse distribution parameters
of all girders, ×n is the n-mode tensor product [33] of a third-order
tensor ILG with the vector Q, with ILG defined as:

=IL ΛG
kjg

g
kj

(48)

with Λg defined by Eq. (6) for every girder g.

2.5.2. Comparing Matrix method and its 2D modification
In order to better understand the relation of the method proposed by

Zhao et al. [9] and the Matrix Method in O’Brien et al. [19], one should
take into account the formulation differences. Recalling Eq. (44), it is
thus, possible to extract the constant Q as in:

=

=

=

−

− −

− −

IL AQ AQ AQ E Z ε

Q A A Q A E Z ε

Q A A A E Z ε

(( ) ( )) ( )

( )

( ) .

g g
T

g g
T

g g g
m

g
T

g
T

g g g
m

g
T T

g g g
m

1

2 1

1 1
(49)

For the special case where the transverse distribution is constant along
the bridge, this expression can be further simplified by writing:

=Q
ε
ε

,g
g
m

m (50)

where εm is the total strain over all girders obtained during one cali-
bration event. Merging Eqs. (49) and (50):
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(51)

Therefore, if all girders have the same properties, namely Eg and Zg, the
Modified 2D method results in equal influence lines for each girder. Still
under this condition, ILg recovers the expression that would be ob-
tained by employing the Matrix method. Thus, under such assumptions,
both methods are equivalent in calibration.

In order to extend the analysis for the weighing procedure, the same
assumption made in Eq. (50) could be incorporated into the theoretical
bending moments expression, for any given scan:

∑ ∑=
= =

E Z ε WQ Λ .
g

G

g g g
t

g

G

g g
1 1 (52)

Supposing that Eg and Zg are equal for all girders, namely E and Z, it
results that the influence lines ILg would be the same, as previously
discussed. Thus, Λg will also be the same, since it is a function of the
influence lines of each girder. Calling Λ such a matrix of influence lines:
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∑ =
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E Z ε W Λ.
g

G

g g g
t

1 (54)

Thus, the predicted moments for Matrix method and modified 2D Moses
are the same, in this case. Therefore, one can conclude that, under the
hypotheses of constant weight distribution and same mechanical
properties of each girder, the weighing procedure also recovers the
same solution found when applying the Matrix method, becoming in-
dependent of the distribution parameters.

2.6. Other approaches found in the literature

Regarding the methods that are focused in this paper, it is worth to
point out that there are some proposed methodologies that address the
same problem, however with characteristics that prevent a suitable
comparison. In what follows, some of them are summarized and such
aspects are discussed.

An approach to construct a more realistic influence line was pro-
posed by Zhao et al. [34]. Their research intended to overcome the
limitations of the theoretical influence line used by Moses in his first
work. The bridge was modeled with semi-rigid connections and hor-
izontal springs as boundary conditions. Moreover, it was included in the
formulation the transverse load distribution, as proposed by Zhao et al.
[9]. To completely define the model, it was necessary to estimate the
values of some stiffness coefficients. In order to find these values, the
author performed a trial and error procedure comparing measured and
modeled values. Two algorithms were proposed: semi-rigid approach,
adjusting end moments and semi-rigid approach, using moments of the
whole bridge. Such methods were compared with Moses, employing the
theoretical influence line. The experimental procedure used two trucks
to calibrate and validate the method. The results showed that both
proposed approaches achieved better results, specially the second
method, which reached the lowest error among all. However, the pro-
cedure for finding the stiffness parameters that define the model does
not have a clear definition. Thus, as such analysis could be user-de-
pendent, performed comparisons may be inconclusive.

Kim et al. [18] proposed an approach to weigh vehicles using de-
formation measures as inputs to neural networks, obtaining the weights
of each axle as the output. The error for both gross vehicle weight

(GVW) and weight by axle were considerably low, indicating that the
proposed approach could be applied in real situations. Nevertheless, the
training process needed numerous training examples, preferably con-
taining vehicles with distinct number of axles, which is not available in
most practical cases. The advantage of this method was that it could be
applied in cases where the traditional approach have some difficulties,
which is not the focus of the present work.

In the work of Helmi et al. [35] three weigh methods were com-
pared utilizing data of a real bridge in Canada. The first two methods
were developed by the authors and consisted in the creation of an
equivalent uniform distributed load to represent the axle loads, con-
sidering the influence line of a simply supported beam. The authors
tried to find the fraction of the bridge span, corresponding to the length
of the equivalent distributed load, which causes the maximum moment
in the bridge. Thus, GVW could be calculated as the ratio between the
maximum moment and this length. Nevertheless, both of the authors’
proposed methods performed worse than the third alternative tested,
namely the Beta method from Ojio and Yamada [36]. This method used
the area under the moment or strain curve to calculate GVW, where
errors of less than 5% were observed. However, none of such methods is
able to distinguish the weight contribution of each axle, which is a
parameter of comparison in the present paper.

The work of Frøseth et al. [3] intended to overcome issues related to
implementation complexity and computational cost through the reali-
zation that the response of the structure is the convolution of the in-
fluence line and the loading. Thus, instead using the well-established
matrix method, the author suggested that the convolution could be
performed in frequency domain, since the convolution integral trans-
forms into an element-wise multiplication operation, which is very ef-
ficiently handled. The reported gains in computational time were, in
general, of one order of magnitude, at least. Another advantage of
viewing the problem under the proposed aspect, was that the matrices
utilized in the least-squares approach in O’Brien et al. [11] were
straightforward to generalize for arbitrary number of axles. It is worth
to mention that it may be necessary to apply a Tikhonov regularization
in order to perform the deconvolution. The reason is that the system
solution could result in an ill-posed problem in the frequency domain,
for example, when the passing vehicle has two axles with identical
loads. The author concluded that the obtained influence line provides
virtually identical results in comparison with the matrix method.
Therefore, the main practical utility of this approach was not precision,
but computational gains. As computational complexity is not addressed
in the present paper, no further analyses are performed for this method.

3. Numerical investigation

In addition to the theoretical argument presented in Section 2, this
study aims to evaluate the numerical performance of discussed
methods. This is justified given the usual absence of comparison among
methods in literature. Table 1 illustrates this matter on studies that shall
be evaluated. In this table, each row presents the method name, the
comparison form employed, the type of data gathered and the method’s
characteristic of obtaining either influence line or weight. It becomes
clear that recent work on the field has not been taken into account.

In order to compare the methods in a set of different conditions, a
parametric investigation is conducted. The main factors that may

Table 1
Literature method comparisons.

Method Comparison Data IL Weight

Matrix [19] Measured/Predicted Real ✓ –
MLE [8] Matrix method Real ✓ –
PBWIM [10] Matrix method Real – ✓
Regularization [11] Matrix method Synthetic – ✓
Modified 2D Moses [9] Measured/Predicted Real ✓ ✓
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influence the performance of B-WIM algorithms are simulated nu-
merically and the trend in gross vehicle weight error is measured and
presented as result.

3.1. Numerical simulations

Recalling, the methods evaluated are the Matrix method [19],
maximum likelihood (MLE) [8], pBWIM [10], Regularization [11] and
Modified 2D Moses [9]. The procedure employed for finding the corner
of the L curve for the regularization approach consisted on minimizing
the Euclidean distance between adjacent points, as suggested in [37].
This is done utilizing all the pairs (E F,norm norm) employed for plotting
the L-curve.

Regarding computational effort, almost all methods show similar
values, being negligible for simulation purposes. The only exception is
the pBWIM method, since this method depends on an optimization
procedure for finding the most likely weights. Thus, while other
methods can perform the computation directly by solving a single linear
system, pBWIM may need several similar solution steps. The compu-
tational effort is shown to be increased by some orders of magnitude,
mainly when the number of axles increases. This issue is partially
handled in this study by employing a modified optimization procedure
than that proposed by O’Brien et al. [10], which employed a grid
search. Nevertheless, the computational effort still remains as a draw-
back for this method.

The model applied to artificially simulate the bridge strains is based
on approximating the bridge behavior by a simply supported Euler-
Bernoulli beam model, employing systems of sprung masses to re-
present each axle. The whole description of numerical procedures em-
ployed is further discussed in Appendix A.

The influence of two main aspects are evaluated on gross vehicle
weight prediction, namely, road pavement profile and bridge span.
Three distinct road profiles are evaluated, with Power Spectral Density
(PSD) amplitudes of zero (no roughness), 4 and 16, where roughness
increases with the amplitude. Further details on the description of this
model are given in the Appendix A. For the bridge span parameter,
three cases are considered, with spans of 10, 20 and 30 meters. Thus,
the combination of every case of road profile and bridge span results in
9 distinct cases. Furthermore, a Gaussian noise with signal to noise ratio
of 20 is added to every signal, aiming to incorporate measurement er-
rors due to other sources than pavement roughness. It is worth to
mention that the values adopted for all these cases intended to reflect
the recommendations of Jacob [38] for B-WIM sites, hence, reprodu-
cing practical cases of interest.

In order to better approximate simulations with the real in-service
operation behavior, a total of 200 vehicles, with number of axles ran-
ging from 2 to 9, are simulated. The procedure for generating vehicles is
random, where the absolute value of a normally distributed random
variable ( N∼θ (0, 1)), is sampled and applied to Eq. (55).

= + ⌈ ⌉J θmin(1 3.5(abs( )) , 9). (55)

where ⌈ ⌉. is the ceil function, abs(.) is absolute value and J is the
number of axles of the generated vehicle.

The histogram of vehicles sampled by this procedure is presented in
Fig. 2 to illustrate that lower weight vehicles are more frequently cre-
ated, an approach that intended to simulate a usual real scenario.

After the definition of the number of axles of the vehicle, a vehicle
type is randomly chosen, which defines the bounds on axle spacing,
damping, stiffness and maximum allowable weight on each axle. A total
of 16 vehicle types are applied in this study, which are defined in
Appendix B, based on a classification often used in Brazil. Axles spa-
cing, damping, stiffness and weights are uniformly sampled based on
the previously defined limits. Since axles weights does not have a
minimum defined, a value of 80% of the maximum allowable weight is
adopted. Furthermore, the velocity is uniformly sampled from a random
variable with 10m/s and 25m/s as lower and upper bounds,

respectively. The remaining parameters related to the bridge are taken
as constants and are defined in Table 2. The same set of vehicles are
applied to each one of the 9 cases.

A total of 40 runs of the vehicles 2C and 2S2, 20 for each of them,
are applied to calibrate the system, simulating the real scenario where
only a limited amount of calibration vehicles is available. For the ca-
libration runs, vehicles speed are adopted accordingly with suggestions
of Jacob [38]. Thus, 12 runs are executed with a mean velocity,
adopted as 20m/s here, 4 runs with 16m/s and the remaining 4 runs
with 24m/s. After the calibration, all methods are applied to a test set
comprised of the 200 runs which were previously generated.

3.2. Numerical results

The algorithms are evaluated in a set of different scenarios for as-
sessing performance aspects and sensitivity of the methods. The com-
parison criterion consists of the mean absolute percentage error related
to the known GVW. The results are shown in Fig. 3, as a function of
roughness amplitude and bridge length. In order to facilitate the dis-
tinction among the performance of the methods, these values are also
presented in Table 3, where some differences appear more evidently.

The simultaneous presentation of performance evolution with re-
spect to both parameters, in Fig. 3 and Table 3, allow for quite inter-
esting remarks. Firstly, all methods showed similar performance,
mainly Matrix method, Regularization and Modified 2D Moses. The
MLE method also shared the same trend, however, its performance
surpassed the other methods when bridge span increases. This fact is
observed independently of the roughness amplitude applied. Thus, al-
though the difference is not so remarkable, the MLE method can be
argued as the most accurate method for this data set.

On the other hand, pBWIM method showed similar performance for
lower roughness amplitude, becoming worse than the others with the
increase in this parameter. It is worth mentioning that the performance
loss occurs in conjunction with a more computationally expensive
prediction procedure.

Fig. 2. Histogram of number of axles of vehicles created.

Table 2
Constant parameters.

Propertie Value (Units)

Bridge modulus of elasticity 1010 (Pa)
Bridge damping coefficient 0.05 (–)
Bridge moment of inertia 0.5 (m4)
Bridge mass per unit length 10 (kg/m)4
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Since the whole bridge is simulated as a unique beam, it is already
expected for Modified 2D Moses and Matrix method results to be nu-
merically identical. Indeed, in all evaluated cases and runs, the results
are exactly the same. However, Regularization also shows similar be-
havior, presenting only slight deviations from the trends in the Matrix
method. Such aspects can be seen in Table 4, where the maximum
deviation of each method with respect to the Matrix method is pre-
sented. One can conclude that, in the conditions of this analysis, the
difference in performance among Matrix method and Regularization is
not significant. The reason is that the parameters found were usually
close to zero, which promotes solutions very close to the least squares in
the Matrix method. Nevertheless, it does not mean that the regular-
ization approach is not useful, however, in the examples, the applica-
tion of the L-curve corner lead to similar results. Therefore, it did not
have a large influence in the cases analyzed here.

In order to correctly analyze the method presented by Zhao et al.
[9], it is necessary to take into account multiple beams in the bridge,
which is addressed in the following sections.

When comparing the evolution of mean absolute error regarding
bridge length and roughness amplitude separately, one can conclude
that the first is more problematic. The difficulty of static methods in
dealing with long span bridges is a fact already well known on B-WIM
literature [38,18]. However, the comparison of variation of bridge
length and roughness amplitude shows an interesting aspect. Analyzing
the results, it is clear that bridge length has a higher impact on the
overall result than the roughness amplitude, since the cases of smooth
profile and 30 m bridge span easily surpass the error of the 10m bridge
span and roughness amplitude of 16.

It is interesting to notice that the increase in bridge length spreads
the effect of roughness in the prediction accuracy. Thus, the result is
more sensible to the road pavement profile for short span bridges. The
opposite is not true, in other words, independently of the roughness
amplitude, the increase in bridge length decreases the accuracy of
weight prediction.

3.3. Multiple beams analysis

Given that Modified 2D Moses and Matrix method resulted in rig-
orously the same predictions in previous analyses, it becomes necessary
simulating cases where the bridge response is modeled considering
multiple beams. In this section, the bridge structure is comprised of 3
distinct beams, where the simulation details are also referred to
Appendix A. Moreover, the same vehicles and properties previously
defined are adopted in this section. Three distinct cases of transverse
distribution (Q) are considered, defined by Table 5.

Since pBWIM, MLE and Regularization methods do not make any
assumption regarding transverse distribution of loads, their evaluation
for this new case should not bring any new insight. Thus, only as a
comparison criterion, the Matrix method is jointly evaluated with
Modified 2D Moses. As a result of this analysis, Figs. 4–6 present the
influence of roughness amplitude and transverse distribution case for
each bridge span.

In all cases, Modified 2D Moses performed equally or worse than
Matrix method. In the case of low roughness amplitude, both methods
could be argued as similar. When roughness amplitude increases,
otherwise, there is a trend for the Modified 2D Moses method to present
higher errors, for all analyzed bridge spans. Such performance gap is
specially remarkable in the 10m bridge. This last statement is in
agreement with the previous section, where the effect of road profile
showed higher impact for short span bridge cases.

One possible explanation for the performance gap can be seen in
Fig. 7. It shows the influence of the error in approximating Q (measured
as the mean of Euclidean distance among predicted and real Q values)
and the percentage difference between the results of the two methods.
This figure makes clear that the accuracy in Q estimate is directly re-
lated to the difference in performance when compared with the Matrix
method. Therefore, if transverse distribution factors can be accurately
predicted, Modified 2D Moses approximates Matrix method perfor-
mance. This fact is in accordance with Section 2.5.2, since Q values are
kept constant in the simulation. On the other hand, the increase in
difference of such factors also increases the likelihood that weight
prediction is corrupted.

Fig. 3. Mean absolute error of each method as a function of bridge length and
roughness amplitude.

Table 3
Mean absolute error for each method and case.

Amplitude Length (m) Matrix MLE pBWIM Regularization Modified 2D
Moses

0 10 0.26 0.26 0.61 0.26 0.26
4 10 0.88 0.88 0.99 0.88 0.88
16 10 1.65 1.62 2.39 1.65 1.65
0 20 1.02 0.93 0.75 1.02 1.02
4 20 1.17 1.09 0.98 1.17 1.17
16 20 1.28 1.24 1.69 1.28 1.28
0 30 3.31 2.99 3.19 3.31 3.31
4 30 3.35 3.06 3.21 3.36 3.35
16 30 3.32 3.00 3.15 3.32 3.32

Table 4
Max of absolute difference between each method and the Matrix method.

Amplitude Length (m) MLE pBWIM Regularization Modified 2D Moses

0 10 0.12 1.32 0.02 0.00
4 10 0.30 5.44 0.02 0.00
16 10 0.53 18.26 0.03 0.00
0 20 0.52 2.43 0.01 0.00
4 20 0.93 6.30 0.01 0.00
16 20 1.54 15.21 0.01 0.00
0 30 1.22 5.24 0.01 0.00
4 30 1.30 6.15 0.01 0.00
16 30 1.38 5.35 0.01 0.00

Table 5
Load distribution factors for each beam (%).

Case Beam 1 Beam 2 Beam 3

Q1 33.3 33.3 33.3
Q2 20.0 40.0 40.0
Q3 25.0 50.0 25.0
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4. Field-testing

In order to compare the different methods presented in Section 3.2
on a real-world setting, data from a bridge located in the city of Uruaçu,
Brazil, is employed. The main aspects regarding such bridge and the
calibration procedure are described in what follows.

Fig. 4. Comparison between Matrix method and Zhao for bridge span of 10m.

Fig. 5. Comparison between Matrix method and Modified 2D Moses for bridge
span of 20m.

Fig. 6. Comparison between Matrix method and Modified 2D Moses for bridge
span of 30m.

Fig. 7. Influence of error in transverse distribution factor on the difference
between methods.

Fig. 8. Itinguijada bridge.

Fig. 9. Mid-span cross section dimensions.

Fig. 10. Lateral view dimensions.
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4.1. Bridge and vehicle description

The Itinguijada bridge, shown in Fig. 8, is comprised by two girders
and five cross beams, with a total length of 29.0m. Figs. 9 and 10 show
the main dimensions of the cross section and the lateral view, respec-
tively. One FAD sensor is installed in the mid-span of the bridge, while
the other is spaced 4 meters longitudinally from the first. Two strain
sensors were attached to each girder, at the mid-span.

Two trucks, with three and five axles, are used for calibrating and
evaluating the system performance. Several runs with each of these
vehicles are conducted, totaling at least 10 runs per truck and lane. The
axle spacing and weight distribution for the calibration vehicles are
shown in Table 6.

4.2. Numerical results

In this section, following what is done in practice, as reported in
Lydon [5] and Yu et al. [1], one influence line is constructed for each
lane. The analyses are based on prediction for three distinct quantities,
defined by Jacob [38]: GVW, single axle and group of axles. The mean
absolute error of such quantities for each method on the whole data set
is presented in Table 7.

All methods showed higher errors for single axle prediction when
compared to the group counterparts, which is in accordance with most
studies in this subject, as in Zhao et al. [9] and O’Brien et al. [11]. The
prediction for GVW and group of axles weight showed reasonable

results, with mean absolute errors always smaller than 7%. However,
single axle prediction did not present the same level of performance,
achieving values as high as 36% for pBWIM method.

MLE reached the best results, independently of the quantity being
measured. However, for almost all methods and quantities measured,
the mean absolute errors reported remained at a quite similar level.
Since all methods disregarded dynamic effects, it is expected that the
higher such effects are, the lower the suitability of all approaches are.
As in this bridge the dynamic behavior is not remarkable, the results for
MLE suggests that this method should perform better in cases where the
model seems to be more suitable.

The similarity of measured errors previously discussed justify a
more detailed analysis on it. Table 8 focus on this statement, based on
the absolute difference in GVW, for each event, between all methods
and the Matrix method, taken as reference here. The parameters pre-
sented are the mean, standard deviation and maximum value of the
absolute difference.

From the five analyzed methods, two can be seen as almost identical
to the Matrix method. The first of them is the Regularization method,
whose maximum difference in GVW for all events does not surpass 1.29
%. This lack of difference, as already discussed in Section 3, is caused by
small regularization parameters obtained from the application of L-
curve method. The second method quite similar to the Matrix method is
Modified 2D Moses, in which maximum difference did not reached 1%.
As already discussed, all girders have the same mechanical properties,
which remain constant along the span. Thus, it is possible that the
contribution factor Qg resulting for each girder and event be approxi-
mately a constant value. As presented in Section 2.5.2, in such a case it
is already expected for results of Matrix method and modified 2D Moses
to be similar.

The remaining two methods, MLE and pBWIM, showed more dis-
tinct values, rendering them as alternative approaches for the Matrix
method. Observing these three methods by a probabilistic point of view,
these differences are remarked. The Matrix method is based on least
squares, which assumes that errors are uncorrelated, normally dis-
tributed and with the same variance, using all the measurements of one
event as the realization of only one normal random variable. The MLE
method also applies the least squares approach, however now con-
sidering a multivariate normal distribution whose variables are mo-
ments measured in each ordinate, independently of the other ordinates.
The pBWIM relaxes the assumption of equal variance, allowing for each
ordinate to have a standard deviation estimated by the value of each
influence line previously calculated from calibration events. Therefore,
in some cases, namely when the data from both distinct events and the
whole bridge have the same normal distribution, all methods should

Table 6
Axle weights and spacing for Itinguijada bridge.

Axle weight (kN) Axle spacing (m)

Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 d12 d23 d34 d45
3 axle vehicle 67.7 146.2 125.5 – – 4.78 1.28 – –
5 axle vehicle 73.6 138.3 130.4 108.9 90.3 3.57 5.59 1.26 1.23

Table 7
Mean absolute error.

Matrix
method

MLE pBWIM Regularization Modified 2D
Moses

GVW (%) 4.47 4.08 4.91 4.40 4.41
Single axle (%) 17.79 15.26 36.46 15.35 16.91
Group of axles

(%)
6.62 5.38 5.78 6.22 6.52

Table 8
Difference between each approach and the Matrix method.

MLE pBWIM Regularization Modified 2D Moses

Mean (%) 1.2101 4.2554 0.3860 0.1526
Std (%) 0.6351 3.6975 0.2901 0.1153

Maximum (%) 2.5673 16.6928 1.2900 0.6864

Table 9
Vehicle types employed in the study.

Vehicle Class Axles

2C 2
3C 3

4CD, 2S2 4
3I2, 2S3, 3S2 5

2R4, 3S3, 3D3, 3N3 6
3D4, 3N4 7

3D5 8
3M6, 3Q6 9
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present virtually the same results. However, considering the real-world
examples presented, this is not the case in practical applications.

One could say that pBWIM should achieve the best result, since this
method has the least restrictive formulation. However, one must realize
that this can only occur if the assumptions are met, and this is not the
case for the pBWIM formulation, as demonstrated in Section 2.3.2. It
could be observed that this method assumes uncorrelated error mo-
ments. Yet, the formulation based on uncertainties in influence line will
necessarily result in banded correlation of the resulting moments
random variable, violating this assumption.

5. Further remarks

Among five tested methods, three of them showed almost identical
results for all events evaluated, namely, the Matrix method,
Regularization and Modified 2D Moses. Although the pBWIM method
could be argued as an alternative approach for weight prediction, both
theoretical and practical results are not promising. Comparing MLE and
Matrix method, the results for the simulated runs were very similar,
however with MLE being slightly better. Furthermore, when field-
testing was conducted, MLE approach showed even better performance.
These points, together with its more suitable statistical background,
indicates that MLE is the most promising method evaluated in the
present study. Some suggestions for improving these methods are in-
cluded in the following.

The formulation employed for Regularization leads to a solution
that recovers only weights associated with each axle. However, it is
possible that the regularization approach can have improved results
when trying to recover the whole impulse vector, as more information
about its characteristics may be incorporated and enforced by the
regularization procedure. Furthermore, it may be worth to employ
different regularization procedures instead of Tikhonov, such as Lasso,
which uses the L1 norm instead of the usual L2 [39]. As a further step,
the non-negativity of the vector can be enforced as in the work of
Hummelsheim [40].

Discussing specifically the pBWIM method, it could be concluded
that an assumption made in the approach formulation is conceptually
violated. Thus, it is useful to change such a methodology to account for
a covariance matrix that is not diagonal. Furthermore, the procedure
suggested to find the most likely weights in the original paper is quite-
time consuming. Thus, applying an optimization procedure is necessary
for achieving a reasonable computational cost.

The procedures applied are clearly divided in two steps: building an
influence line and weighing the vehicles. From this perspective, one
could easily apply distinct methods for each step. For instance, MLE
could address the former and regularization the latter. Since it was not
the focus of this work, coupling methods was not evaluated. However, it
has potential to improve the accuracy of predicted axle weights.

Overall, it becomes clear that the main point that should be ad-
dressed is the incorporation of additional knowledge to the model. One
aspect is related to dynamic effects. The results could be improved by a
more suitable consideration on the dynamic behavior of the vehicle-
bridge system model. A second aspect is related to the form of the so-
lution. The knowledge that a vehicle is modeled by point loads on each
axle imposes constraints on the form of the impulse vector and the sign
of the resulting weights. Nevertheless, relaxing assumptions that over-
constrain the model, such as the correctness of axle spacing

measurement, may improve flexibility and robustness to the methods.
For all evaluated methods, the weighing procedure disregarded

some prior information that could lead to more reliable estimates. As
examples, one could cite the non-negativity of weights and the trend for
axle weights having values at the same order of magnitude. As dis-
cussed previously, a Bayesian approach could be employed in such a
case, using these prior information to create improved estimators for
axle weights.

When observing methods by the statistical point of view, the as-
sumptions implicitly made in the development of such formulations
arose in a more clear fashion. Thus, the possibilities of relaxing some of
those assumptions could be seen as a good initial point for the devel-
opment of new methods. Furthermore, by knowing in advance which
statistical assumption was made, it becomes possible to easily predict
for which real cases the new methods could perform better. As an ex-
ample, allowing errors to be correlated should perform better in pro-
blems where the model fits poorly, since missing information on for-
mulation could be seen as correlated errors. Thus, enabling the model
to allow correlated error is an alternative to address the dynamic ef-
fects.

The comparison criterion of the evaluated methods was done
without a clear performance threshold. Thus, although it is possible to
verify which method is best in the tested cases, nothing can be said
about robustness or suitability of overall results. Therefore, it motivates
the development of a methodology for extracting more useful in-
formation from such results, mainly regarding robustness in practical
applications.

6. Concluding remarks

This work presented a comparative study regarding some methods
applied in B-WIM systems to derive the bridge influence line and pre-
dict vehicle weights. In order to fairly compare the analyzed methods,
only those which do not explicitly address the dynamic behavior of the
vehicle-bridge system were considered. Furthermore, the methods were
interpreted from a statistical point of view, where their assumptions
were highlighted, remarking their theoretical differences.

In addition to the theoretical comparisons, the methods were im-
plemented and numerically compared, addressing the lack of compar-
isons found in literature. In order to assess the similarity or the ad-
vantage of a method compared to the others, synthetically generated
and real data were considered. Furthermore, the influence of some
main factors that affect B-WIM systems were evaluated in simulated
analyses, such as road profile and bridge length.

The analysis using simulated data showed that the increase in
bridge length had more impact in corrupting the overall results than the
roughness amplitude. The influence of road profile increased when
decreasing the bridge span. When analyzing the performance of the
methods, results indicated that pBWIM and Modified 2D Moses were
surpassed by the other approaches. Indeed, pBWIM usually provided
worse weight estimation performance, together with a considerably
higher computational cost. Modified 2D Moses was, for all analyzed
cases, equal or worse than Matrix method. The remaining methods,
MLE, Matrix method and Regularization, presented very similar results,
with MLE being slightly better. The results regarding real data followed
the trend already observed in numerical simulation, however with MLE
showing superior performance. Thus, from both theoretical and

Table 10
Mean values of stiffness and damping coefficients for each kind of axle

Axle type Stiffness (N/m) Damping (Ns/m)

Rear 1,000,000 10,000
Front 400,000 10,000

Semi trailer 750,000 10,000
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practical perspectives, the MLE could be argued as the most promising
method evaluated in this study.

Overall, the reformulation and reinterpretation of methods under a
common statistical point of view allowed a better understanding of the
underlying assumptions and theoretical hypothesis. This fact enabled a
better comparison among methods and generated an opportunity for
further improvements. For example, developing novel methods by re-
laxing the model statistical assumptions or applying a Bayesian

approach to better account for prior information.
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Appendix A. Sprung-mass simulation

In the present study, the simulations are based on the works of Biggs [41], Yang et al. [42] and Yang and Lin [43]. The resulting dataset is
available online [44]. The dynamic behavior of the bridge is modeled supposing a simply supported Euler Bernoulli beam model, under a set of
moving sprung-masses. In this approach, each sprung-mass system represents one vehicle axle. Modal decomposition is performed for the equation of
motion of the bridge, resulting in Eq. (56):

∑+ + =
=

q ξ ω q ω q
P

mL
iπVt

L
¨ 2 ̇

2
¯

sin ,i i i i i i
j

N
j2

1 (56)

where N is the number of axles, q ω,i i and ξi are the modal coordinates, natural frequency and damping of the i mode, respectively. Furthermore,
dotted variables represent the derivative with respect to time, Pj is the load of the j axle, V the speed of the vehicle, L is the length of the bridge and m̄
is the mass per unit length of the bridge.

The equations of motion for each sprung-mass system is given by Eq. (57):

+ + = + + + ′= =M z C z K z K u y C u Vy¨ ̇ ( )| ( ̇ ) | ,vj j vj j vj j vj x Vt vj x Vt (57)

where M C,vj vj and Kvj are the mass, damping and stiffness of axle j. Furthermore, u represents the bridge vertical displacement, zj is the vertical
position of the j axle, y is the pavement elevation ordinate and a prime denotes the derivative with respect to x.

Both bridge displacement and its first derivative could be computed directly with the modal coordinates and mode shapes of the simply supported
beams:
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where m is the number of modes applied, which is equal to 5 in all simulations.
The simulation of pavement roughness applied here is a common approach in studies in the same subject [45,46,16]. The ordinates of the

pavement irregularities are modeled as a random process, with a specific power spectral density function (PSD):
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2
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where Φ(Ω )0 is the amplitude coefficient, analyzed in previous sections, measured in ( −10 m /cycle6 3 ) and Ω0 is a reference spatial frequency. Thus, the
road profile is generated by sampling from this PSD, using the method of superposition of harmonics [47]:

∑= −
=

y x ω π x ϕ( ) 2ΔΩΦ( ) cos(2 Ω )
i

n

i i i
1

Ω

(61)

where y x( ) is the generated road vertical profile, ϕi is a random uniform phase angle between 0 and π2 , ΔΩ is a constant increment, nΩ is the total
number of frequency increments in the interval and Ωi is a frequency uniformly distributed in the range of Ωmin and Ωmax . The parameters adopted
are =Ω 0.010 cycle/m, =Ω 0.001min cycle/m, =Ω 4max cycle/m and =ΔΩ 0.001 cycle/m.

It is worth to mention that for each run a distinct road profile is generated, since in the practical scenario lateral deviations occur. Moreover, a
moving average with total size of 30 cm is employed to approximate the real contact between tire and pavement [46].

The interaction between bridge and vehicle clearly appears in Eq. (57), by means of the displacement term related to the beam at the current axle
position. Moreover, such interaction also occurs in Eq. (56), due to the Pj term. This relation is remarked in Eq. (62):
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with δ () and H () representing the Dirac delta and Heaviside functions, respectively. Moreover, g is the acceleration of gravity and tj is the time that
the j axle arrives the bridge.

The equations of motion are solved independently, by a decoupled approach. Both bridge and vehicle equations are solved numerically by
applying the Newmark-β method, with 1400 time steps. The time window begins when the first vehicle axle enters the bridge and ends when the last
axle leaves it. The problem is solved iteratively, since the interaction force in the bridge-vehicle system changes with the displacement of both beam
and sprung mass. An initial guess of interaction force is given to the beam equations, where the beam displacement is calculated. Such a dis-
placement is then enforced to the vehicle model and a new interaction force is calculated. This procedure continues until the change in the
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interaction force reaches a small tolerance ( −10 5). Usually such procedure converges rapidly, within 5 iterations. The midspan strains (s), which are
the main output of simulation, are also updated with this interaction. Adopting, without loss of generality, a unit vertical distance from the neutral
axis, and utilizing the fact that strains are related with the second derivative of displacement with respect to x, the strains can be written as:
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For the case of multiple beams, a transverse distribution factor (Q) is provided and applied to divide the axle loads for each beam. Thus, each
beam is simulated independently.

In order to simulate the inherent imperfections of the measured signal due to all possible aspects in the measurement field, noise is applied to the
simulated response. The noise applied consists of a white Gaussian random noise, with a constant signal to noise ratio of 20.

Appendix B. Vehicle types

The vehicles employed are based on the brazilian’s traffic and infrastructure department report [48]. As some classes have only a lower bound for
axle spacing, the upper bound for such cases is defined as 5 meters, since this is necessary for generating vehicles in a uniform distribution. Table 9
presents all types of vehicle employed as well as their number of axles. In order to allow a more concise presentation, axle spacing and weight of each
employed truck are omitted. For assessing such values, the reader is referred to DNIT IPR 723 [48].

On the other hand, damping and stiffness coefficients still need to be defined. In this study, each vehicle have a specific coefficient related to each
axle, which is a random variable uniformly distributed around a mean value, presented in Table 10. This distribution have bounds of 0.5 and 1.5
times this mean value, which is adopted based on Fancher [49] and Nosseir et al. [50]. It is worth to cite that such mean values differ accordingly
with the type of axle, namely: rear, front or semi trailer axle.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.engstruct.2019.109463.
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